Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Med Phys ; 39(6Part6): 3654, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517587

RESUMO

PURPOSE: Thick segmented scintillators, incorporating a 2-dimensional matrix of optically-isolated scintillator elements, have shown considerable potential for improving the performance of megavoltage active matrix, flat-panel imagers (MV AMFPIs). While over a factor of 20 improvement in DQE at zero spatial-frequency has been demonstrated for prototypes incorporating CsI(Tl) and BGO scintillators, less-than-optimal element-to-element alignment (misalignment) as well as mis-registration to the underlying AMFPI array pixels can result in spatial resolution loss, reducing DQE improvement at higher spatial frequencies. In this presentation, a method to restore spatial resolution and DQE, based on the use of a high resolution AMFPI array along with special binning techniques, is investigated. METHODS: The effect of misalignment and mis-registration of segmented scintillators on imaging performance was investigated theoretically and empirically through determination of the modulation transfer function (MTF) and DQE, as well as through realization of reconstructed images of a phantom in a cone-beam CT geometry. The empirical investigation, which was conducted using a 6 MV photon beam, employed a prototype BGO segmented scintillator consisting of 120×60 elements separated by 50 µm-thick septal walls and an element-to-element pitch of 1016 µm. The scintillator was coupled to a higher resolution 127-µm-pitch AMFPI array. RESULTS: Misalignment and mis-registration result in significant degradation of spatial resolution, leading to DQE reduction at non-zero spatial frequencies. While mis-registration for a well-aligned scintillator can be overcome through 8×8 binning of the array pixels to match the scintillator elements, any misalignment will affect such binning and lead to spatial resolution loss. However, the use of 'selective' binning, consisting of the selection of those pixels corresponding to the interior locations of each element, improves resolution while preserving DQE. CONCLUSIONS: The use of high-resolution AMFPI arrays combined with selective binning allows prototype AMFPIs incorporating thick, segmented scintillators to achieve imager performance limited only by scintillator performance. Work Supported by NIH grant R01-CA051397.

2.
Mater Res Soc Symp Proc ; 1066: 457-462, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-20862269

RESUMO

An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors.

3.
Med Phys ; 28(12): 2538-50, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11797959

RESUMO

After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed.


Assuntos
Computadores , Desenho de Equipamento , Fenômenos Biofísicos , Biofísica , Método de Monte Carlo , Teoria Quântica , Sensibilidade e Especificidade
4.
Med Phys ; 27(8): 1841-54, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10984231

RESUMO

A detailed theoretical and empirical investigation of additive noise for indirect detection, active matrix flat-panel imagers (AMFPIs) has been performed. Such imagers comprise a pixelated array, incorporating photodiodes and thin-film transistors (TFTs), and an associated electronic acquisition system. A theoretical model of additive noise, defined as the noise of an imaging system in the absence of radiation, has been developed. This model is based upon an equivalent-noise-circuit representation of an AMFPI. The model contains a number of uncorrelated noise components which have been designated as pixel noise, data line thermal noise, externally coupled noise, preamplifier noise and digitization noise. Pixel noise is further divided into the following components: TFT thermal noise, shot and 1/f noise associated with the TFT and photodiode leakage currents, and TFT transient noise. Measurements of various additive noise components were carried out on a prototype imaging system based on a 508 microm pitch, 26 x 26 cm2 array. Other measurements were performed in the absence of the array, involving discrete components connected to the preamplifier input. Overall, model predictions of total additive noise as well as of pixel, preamplifier, and data line thermal noise components were in agreement with results of their measured counterparts. For the imaging system examined, the model predicts that pixel noise is dominated by shot and 1/f noise components of the photodiode and TFT at frame times above approximately 1 s. As frame time decreases, pixel noise is increasingly dominated by TFT thermal noise. Under these conditions, the reasonable degree of agreement observed between measurements and model predictions provides strong evidence that the role of TFT thermal noise has been properly incorporated into the model. Finally, the role of the resistance and capacitance of array data lines in the model was investigated using discrete component circuits at the preamplifier input. Measurements of preamplifier noise and data line thermal noise components as a function of input capacitance and resistance were found to be in reasonable agreement with model predictions.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radiografia/instrumentação , Radiografia/métodos , Eletrônica , Desenho de Equipamento , Reprodutibilidade dos Testes , Fatores de Tempo , Raios X
5.
Med Phys ; 27(8): 1855-64, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10984232

RESUMO

A quantitative investigation of a technique for reducing correlated noise in indirect detection active matrix flat-panel imagers has been reported. Correlated noise in such systems arises from the coupling of electronic noise, originating from fluctuations in external sources such as power supplies and ambient electromagnetic sources, to the imaging array via its address lines. The noise reduction technique involves the use of signals from columns of compensation line pixels located in relatively close proximity to the columns of normal imaging pixels on the array. Compensation line pixels are designed to be as sensitive to externally-coupled noise as columns of normal imaging pixels but are insensitive to incident radiation. For each imaging pixel, correlated noise is removed by subtracting from the imaging pixel signal a signal derived from compensation line pixels located on the same row. The effectiveness of various implementations of this correction has been examined through measurements of signal and noise from individual pixels as well as of noise power spectra. These measurements were performed both in the absence of radiation as well as with x rays. The effectiveness of the correction was also demonstrated qualitatively by means of an image of a hand phantom. It was found that the use of a single compensation line dramatically reduces external noise through removal of the correlated noise component. While this form of the correction increases non-radiation-related uncorrelated noise, the effect can be largely reduced through the introduction of multiple compensation lines. Finally, a position-dependent correction based on compensation lines on both sides of the array was found to be effective when the magnitude of the correlated noise varied linearly across the array.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radiografia/instrumentação , Radiografia/métodos , Eletrônica , Desenho de Equipamento , Mãos/diagnóstico por imagem , Humanos , Modelos Estatísticos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fatores de Tempo , Raios X
6.
Med Phys ; 27(2): 289-306, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10718132

RESUMO

A theoretical investigation of factors limiting the detective quantum efficiency (DQE) of active matrix flat-panel imagers (AMFPIs), and of methods to overcome these limitations, is reported. At the higher exposure levels associated with radiography, the present generation of AMFPIs is capable of exhibiting DQE performance equivalent, or superior, to that of existing film-screen and computed radiography systems. However, at exposure levels commonly encountered in fluoroscopy, AMFPIs exhibit significantly reduced DQE and this problem is accentuated at higher spatial frequencies. The problem applies both to AMFPIs that rely on indirect detection as well as direct detection of the incident radiation. This reduced performance derives from the relatively large magnitude of the square of the total additive noise compared to the system gain for existing AMFPIs. In order to circumvent these restrictions, a variety of strategies to decrease additive noise and enhance system gain are proposed. Additive noise could be reduced through improved preamplifier, pixel and array design, including the incorporation of compensation lines to sample external line noise. System gain could be enhanced through the use of continuous photodiodes, pixel amplifiers, or higher gain x-ray converters such as lead iodide. The feasibility of these and other strategies is discussed and potential improvements to DQE performance are quantified through a theoretical investigation of a variety of hypothetical 200 microm pitch designs. At low exposures, such improvements could greatly increase the magnitude of the low spatial frequency component of the DQE, rendering it practically independent of exposure while simultaneously reducing the falloff in DQE at higher spatial frequencies. Furthermore, such noise reduction and gain enhancement could lead to the development of AMFPIs with high DQE performance which are capable of providing both high resolution radiographic images, at approximately 100 microm pixel resolution, as well as variable resolution fluoroscopic images at 30 fps.


Assuntos
Radiografia , Estudos de Viabilidade , Fluoroscopia , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Teoria Quântica , Reprodutibilidade dos Testes , Raios X
7.
Med Phys ; 26(8): 1530-41, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10501053

RESUMO

The first examination of the use of active matrix flat-panel arrays for dosimetry in radiotherapy is reported. Such arrays are under widespread development for diagnostic and radiotherapy imaging. In the current study, an array consisting of 512 x 512 pixels with a pixel pitch of 508 microm giving an area of 26 x 26 cm2 has been used. Each pixel consists of a light sensitive amorphous silicon (a-Si:H) photodiode coupled to an a-Si:H thin-film transistor. Data was obtained from the array using a dedicated electronics system allowing real-time data acquisition. In order to examine the potential of such arrays as quality assurance devices for radiotherapy beams, field profile data at photon energies of 6 and 15 MV were obtained as a function of field size and thickness of overlying absorbing material (solid water). Two detection configurations using the array were considered: a configuration (similar to the imaging configuration) in which an overlying phosphor screen is used to convert incident radiation to visible light photons which are detected by the photodiodes; and a configuration without the screen where radiation is directly sensed by the photodiodes. Compared to relative dosimetry data obtained with an ion chamber, data taken using the former configuration exhibited significant differences whereas data obtained using the latter configuration was generally found to be in close agreement. Basic signal properties, which are pertinent to dosimetry, have been investigated through measurements of individual pixel response for fluoroscopic and radiographic array operation. For signal levels acquired within the first 25% of pixel charge capacity, the degree of linear response with dose was found to be better than 99%. The independence of signal on dose rate was demonstrated by means of stability of pixel response over the range of dose rates allowed by the radiation source (80-400 MU/min). Finally, excellent long-term stability in pixel response, extending over a 2 month period, was observed.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Radiometria/instrumentação , Fenômenos Biofísicos , Biofísica , Eletrônica Médica/instrumentação , Fluoroscopia , Humanos , Aceleradores de Partículas , Radiometria/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Alta Energia , Sensibilidade e Especificidade
8.
Int J Radiat Oncol Biol Phys ; 42(2): 437-54, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9788427

RESUMO

PURPOSE: The development of the first prototype active matrix flat-panel imager (AMFPI) capable of radiographic and fluoroscopic megavoltage operation is reported. The signal and noise performance of individual pixels is empirically quantified. Results of an observer-dependent study of imaging performance, using a contrast-detail phantom, are detailed and radiographic patient images are shown. Finally, a theoretical investigation of the zero-frequency detective quantum efficiency (DQE) performance of such imagers, using a cascaded systems formalism, is presented. METHODS AND MATERIALS: The imager is based on a 508-microm pitch, 26 x 26 cm2 array which detects radiation indirectly via an overlying copper plate + phosphor screen converter. RESULTS: Due to its excellent optical coupling, the imager exhibits sensitivity superior to that of video-based systems. With an approximately 133 mg/cm2 Gd2O2S:Tb screen the system is x-ray quantum-noise-limited down to approximately 0.3 cGy, conservatively, and extensions of this behavior to even lower doses by means of reduced additive electronic noise is predicted. The observer-dependent study indicates performance superior to that of conventional radiotherapy film while the patient images demonstrate good image quality at 1 to 4 MU. The theoretical studies suggest that, with a 133 mg/cm2 Gd2O2S:Tb screen, the system would provide DQE performance equivalent to that of video-based systems and that almost a factor of two improvement in DQE is achievable through the incorporation of a 400 mg/cm2 screen. CONCLUSION: The reported prototype imager is the first megavoltage AMFPI having performance characteristics consistent with practical clinical operation. The superior contrast-detail sensitivity of the imager allows the capture of high-quality 6- and 15-MV images at minimal dose. Moreover, significant performance improvements, including extension of the operational range up to full portal doses, appear feasible. Such capabilities could be of considerable practical benefit in patient localization and verification.


Assuntos
Radiografia/métodos , Ecrans Intensificadores para Raios X , Idoso , Humanos , Masculino , Variações Dependentes do Observador , Imagens de Fantasmas , Tecnologia Radiológica
9.
Med Phys ; 25(5): 614-28, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9608470

RESUMO

The performance of an indirect-detection, active matrix flat-panel imager (FPI) at diagnostic energies is reported in terms of measured and theoretical signal size, noise power spectrum (NPS), and detective quantum efficiency (DQE). Based upon a 1536 x 1920 pixel, 127 microns pitch array of a-Si:H thin-film transistors and photodiodes, the FPI was developed as a prototype for examination of the potential of flat-panel technology in diagnostic x-ray imaging. The signal size per unit exposure (x-ray sensitivity) was measured for the FPI incorporating five commercially available Gd2O2S:Tb converting screens at energies 70-120 kVp. One-dimensional and two-dimensional NPS and DQE were measured for the FPI incorporating three such converters and as a function of the incident exposure. The measurements support the hypothesis that FPIs have significant potential for application in diagnostic radiology. A cascaded systems model that has shown good agreement with measured individual pixel signal and noise properties is employed to describe the performance of various FPI designs and configurations under a variety of diagnostic imaging conditions. Theoretical x-ray sensitivity, NPS, and DQE are compared to empirical results, and good agreement is observed in each case. The model is used to describe the potential performance of FPIs incorporating a recently developed, enhanced array that is commercially available and has been proposed for testing and application in diagnostic radiography and fluoroscopy. Under conditions corresponding to chest radiography, the analysis suggests that such systems can potentially meet or even exceed the DQE performance of existing technology, such as screen-film and storage phosphor systems; however, under conditions corresponding to general fluoroscopy, the typical exposure per frame is such that the DQE is limited by the total system gain and additive electronic noise. The cascaded systems analysis provides a valuable means of identifying the limiting stages of the imaging system, a tool for system optimization, and a guide for developing strategies of FPI design for various imaging applications.


Assuntos
Fluoroscopia/métodos , Processamento de Imagem Assistida por Computador , Radiografia/métodos , Desenho de Equipamento , Fluoroscopia/instrumentação , Interpretação de Imagem Assistida por Computador , Modelos Teóricos , Teoria Quântica , Radiografia/instrumentação , Sensibilidade e Especificidade , Raios X
10.
Med Phys ; 24(1): 51-70, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9029541

RESUMO

Signal properties of the first large-area, high resolution, active matrix, flat-panel imager are reported. The imager is based on an array of 1536 x 1920 pixels with a pixel-to-pixel pitch of 127 microns. Each pixel consists of a discrete amorphous silicon n-i-p photodiode coupled to an amorphous silicon thin-film transistor. The imager detects incident x rays indirectly by means of an intensifying screen placed over the array. External acquisition electronics send control signals to the array and process analog imaging signals from the pixels. Considerations for operation of the imager in both fluoroscopic and radiographic modes are detailed and empirical signal performance data are presented with an emphasis on exploring similarities and differences between the two modes. Measurements which characterize the performance of the imager were performed as a function of operational parameters in the absence or presence of illumination from a light-emitting diode or x rays. These measurements include characterization of the drift and magnitude of the pixel dark signal, the size of the pixel switching transient, the temporal behavior of pixel sampling and the implied maximum frame rate, the dependence of relative pixel efficiency and pixel response on photodiode reverse bias voltage and operational mode, the degree of linearity of pixel response, and the trapping and release of charge from metastable states in the photodiodes. In addition, X-ray sensitivity as a function of energy for a variety of phosphor screens for both fluoroscopic and radiographic operation is reported. Example images of a line-pair pattern and an anthropomorphic phantom in each mode are presented along with a radiographic image of a human hand. General and specific improvements in imager design are described and anticipated developments are discussed. This represents the first systematic investigation of the operation and properties in both radiographic and fluoroscopic modes of an imager incorporating such an array.


Assuntos
Fluoroscopia/instrumentação , Mãos/diagnóstico por imagem , Imagens de Fantasmas , Radiografia/instrumentação , Osso e Ossos/diagnóstico por imagem , Eletrônica , Desenho de Equipamento , Fluoroscopia/métodos , Humanos , Radiografia/métodos , Sensibilidade e Especificidade , Filme para Raios X , Raios X
11.
Med Phys ; 24(1): 71-89, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9029542

RESUMO

Noise properties of active matrix, flat-panel imagers under conditions relevant to diagnostic radiology are investigated. These studies focus on imagers based upon arrays with pixels incorporating a discrete photodiode coupled to a thin-film transistor, both fabricated from hydrogenated amorphous silicon. These optically sensitive arrays are operated with an overlying x-ray converter to allow indirect detection of incident x rays. External electronics, including gate driver circuits and preamplification circuits, are also required to operate the arrays. A theoretical model describing the signal and noise transfer properties of the imagers under conditions relevant to diagnostic radiography, fluoroscopy, and mammography is developed. This frequency-dependent model is based upon a cascaded systems analysis wherein the imager is conceptually divided into a series of stages having intrinsic gain and spreading properties. Predictions from the model are compared with x-ray sensitivity and noise measurements obtained from individual pixels from an imager with a pixel format of 1536 x 1920 pixels at a pixel pitch of 127 microns. The model is shown to be in excellent agreement with measurements obtained with diagnostic x rays using various phosphor screens. The model is used to explore the potential performance of existing and hypothetical imagers for application in radiography, fluoroscopy, and mammography as a function of exposure, additive noise, and fill factor. These theoretical predictions suggest that imagers of this general design incorporating a CsI: Tl intensifying screen can be optimized to provide detective quantum efficiency (DQE) superior to existing screen-film and storage phosphor systems for general radiography and mammography. For fluoroscopy, the model predicts that with further optimization of a-Si:H imagers, DQE performance approaching that of the best x-ray image intensifier systems may be possible. The results of this analysis suggest strategies for future improvements of this imaging technology.


Assuntos
Radiografia/instrumentação , Radiografia/métodos , Eletrônica , Desenho de Equipamento , Feminino , Fluoroscopia , Humanos , Mamografia , Modelos Teóricos , Teoria Quântica , Reprodutibilidade dos Testes
12.
Int J Radiat Oncol Biol Phys ; 36(3): 661-72, 1996 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-8948351

RESUMO

PURPOSE: The creation of the first large-area, amorphous silicon megavoltage imager is reported. The imager is an engineering prototype built to serve as a stepping stone toward the creation of a future clinical prototype. The engineering prototype is described and various images demonstrating its properties are shown including the first reported patient image acquired with such an amorphous silicon imaging device. Specific limitations in the engineering prototype are reviewed and potential advantages of future, more optimized imagers of this type are presented. METHODS AND MATERIALS: The imager is based on a two-dimensional, pixelated array containing amorphous silicon field-effect transistors and photodiode sensors which are deposited on a thin glass substrate. The array has a 512 x 560-pixel format and a pixel pitch of 450 microns giving an imaging area of approximately 23 x 25 cm2. The array is used in conjunction with an overlying metal plate/phosphor screen converter as well as an electronic acquisition system. Images were acquired fluoroscopically using a megavoltage treatment machine. RESULTS: Array and digitized film images of a variety of anthropomorphic phantoms and of a human subject are presented and compared. The information content of the array images generally appears to be at least as great as that of the digitized film images. CONCLUSION: Despite a variety of severe limitations in the engineering prototype, including many array defects, a relatively slow and noisy acquisition system, and the lack of a means to generate images in a radiographic manner, the prototype nevertheless generated clinically useful information. The general properties of these amorphous silicon arrays, along with the quality of the images provided by the engineering prototype, strongly suggest that such arrays could eventually form the basis of a new imaging technology for radiotherapy localization and verification. The development of a clinically useful prototype offering high-quality images, ultimately with an approximately 52 x 52-cm2 detection surface, is anticipated.


Assuntos
Radiografia/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Desenho de Equipamento , Silício
13.
Radiographics ; 15(4): 993-1000, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7569143

RESUMO

As part of the development necessary for implementing a fully digital radiology department, the authors have investigated thin-film photodiodes and transistors for use in new photoelectronic imaging devices. One such device, a large-area, flat-panel, amorphous silicon imaging array, has been developed and is currently being tested. The array has a format of 512 x 560 pixels, a pixel-to-pixel pitch of 450 microns, and an area of 230 x 252 mm2, making it the largest self-scanning, solid-state imaging array developed to date. The array is used in conjunction with an overlying x-ray converter. Although specifically designed for megavoltage imaging, the device can produce high-quality, low spatial resolution, diagnostic x-ray images. Qualitative comparisons of array images of anthropomorphic head, chest, and pelvic phantoms and a spatial resolution pattern suggest that much of the information content of the film images at low spatial resolution is present in the corresponding array images. Current trends in the development of large-area, flat-panel imaging technology hold the promise of higher resolution arrays in the near future.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Tecnologia Radiológica/instrumentação , Humanos , Imagens de Fantasmas , Silício , Ecrans Intensificadores para Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...